Team #2

Solar Car Project Senior Design 2011 – 2012

Patrick Breslend Bradford Burke Jordan Eldridge Tyler Holes

Valerie Pezzullo Greg Proctor Shawn Ryster

Introduction

- Multi-year, multi-disciplinary team
- Objectives:
- Charge batteries solely on solar energy
- Accommodate new motor → Redesign:
 - Regenerative braking
 - Rear suspension and drive train
 - Motor controller
 - 96V to 48V system
- Latch and hinge top to bottom
- Enclose the driver in a cockpit
- Air circulation within the vehicle

Functional Diagram

Concepts Description

Solar Array Placement

Boost converter

Protection Circuit

Concepts Description

Drivetrain

Motor

Controller

Motor

Hood Scoop Placement

Bubble Design

Concept Matrix

Piano/Continuous Hinge			
Criteria	Weight	Score	Weighted
Low Cost (ranks high)	20%	3	0.6
Durability	10%	9	0.9
Ease of Installation	20%	8	1.6
Ease of Operation	30%	9	2.7
Applicability	20%	9	1.8
TOTAL	100%		7.6

- •Example decision matrices
 - •Hinge
 - •Latch

•Benefits:

- Cost saving
- •Time saving
- Meets all requirements
- Organizational tool

Remote Release Cable Latch			
Criteria	Weight	Score	Weighted
Low Cost (ranks high)	20%	3	0.6
Durability	10%	7	0.7
Ease of Installation	20%	7	1.4
Ease of Operation	30%	10	3
Applicability	20%	10	2
TOTAL	100%		7.7

Solar Array

Solar Array Mounted

Solar Wiring Bus

Solar Panel Wiring

Protection Circuit

Max Power Point Tracker (MPPT) and Boost Converter

Design for Wiring Diagram of MPPT / Boost converter

Max Power Point Tracker (MPPT) and Boost Converter

MPPT/ dc-dc Boost Converter Implementation

Motor and Motor Controller

Lemco DC Brushed Motor (LEM200-127)

Kelly Motor Controller (KDZ48201)

Batteries and Test Board

Battery Box Test Board

Seat and Steering Adjustment

New Seat with 5 point seatbelt

Steering Adjustment shin guard

Controls, Relays, and Pedals

Driver Controls

Regenerative Braking

Forward, Reverse, and Main Relays

Drivetrain

Rear Arm/Suspension model in Pro-Engineer

Rear Arm/Suspension

Double Point Remote Release Cable

Latch

Front Latch Placement

Piano/Continuous Hinge

Air Circulation

- Allows direct airflow to driver and components
- Mounted to frame

Engineering Economics

- Original Budget allocated :
 - **\$ 848.33** Left over from last year
 - \$ 750.00 ECE Department
 - \$ 2,500.00 Dean Perry's office
 - Total = \$4,098.33
- Total expenditure = \$3267
 - Motor, motor controller, MPPT = \$2289.33
 - Drivetrain, latch, hinge = **\$931.01**
 - Miscellaneous = \$46.66
- Remaining = \$473.33

Testing

Solar Array

Solar Charging

Testing

Driver Adjustment

Boost Converter

Testing

Solar Protection Circuit

Solar Panels

CAPS Open House

CAPS Open House

Conclusion

Original Objectives	Progress	
Solar powered rechargeable vehicle	Complete	
Implement regenerative breaking	Complete	
Latch and hinge system	Complete	
Driver enclosure	Installing	
Air circulation	Complete	
Conversion from 98V to 48V/12V	Complete	
Rear arm suspension & Motor mount	Complete	
Steering column	Complete	
Adjustable seat with 5-point harness	Complete	
Solar array	Complete	
Max power point tracker	Complete	
Progress of three year solar project	Complete	

Questions?

